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1. (Suur teleskoop)

Ligikaudne lahendus.
Kõigepealt hindame, mis vahemaa ∆z võrra nihkub teleskoobi serv raskusvälja tõttu al-
lapoole. Esimeses lähenduses võrdsustame teleskoobi pinna ruudukujulise plaadiga külje-
pikkusega R, mida hoitakse ühest servast horisontaalselt nõnda, et teine serv vajub oma
raskuse tõttu teatud kõrguse võrra allapoole. Hinnangu saamiseks kasutame skaleerumis-
seadusi ja dimensioonide analüüsi.

Ilmselt on vertikaalne nihe võrdeline plaadi raskusjõuga Mg ja pöördvõrdeline Youngi
mooduliga E. Tõepoolest, mida raskem on plaat, seda rohkem see allapoole vajub, ning
mida jäigem see on, seda vähem. Lisaks sõltub ∆z plaadi paksusest t ja ruudu läbimõõ-
dust R. Samas, dimensioonide analüüsist on näha, et juhul kui ∆z ≈ MgRαtβ/E, siis
α + β = −1. Tõepoolest, Youngi mooduli ühik on rõhk, st jõud pindalaühiku kohta. Seega
Mg/E ühik on pindala.

Edasi hindame, kuidas sõltub ∆z paksusest t. Plaadile mõjub raskusvälja poolt jõumo-
ment, mis teda alla surub. Seda tasakaalustavad sisemised pinged, mis tulenevad plaadi
kõverdumisest ja diferentsiaalsest kokkusurumisest. Liikudes piki plaadi paksust ülemisest
pinnast allapoole, on selge et sisemised pinged kasvavad lineaarselt kaugusega ülemisest
pinnast z. Lisaks kasvab sisemiste jõudude jõuõlg võrdeliselt z-ga ning seega integreerides
läbi paksuse leiame, et summaarne jõumoment skaleerub kui t3. Seega β = −3 ning α = 2.
Niisiis,

∆z ≈ MgR2

Et3 = 0,24 m.

Kuna teleskoobi pind on parabool valemiga z = x2/(4f), siis ∆z(x = R) ≈ R2∆f/(4f2),
ehk

∆f ≈ ∆z
4f2

R2 = 0,34 m.

Täpne vastus: 0,091 m

2. (Külgtuul)

Ligikaudne lahendus.
Kuna rada on piisavalt pikk (200 m), saame jämedas lähenduses eeldada, et jalgrattur
liigub suurema osa ajast maksimaalse võimaliku kiirusega v0, kus tema kineetiline energia
enam ei kasva. Kuigi see alahindab koguaega (jättes arvestamata stardikiirenduse), annab
see kahe olukorra ajavahe (∆t) väga täpselt, sest stardifaas on mõlemal juhul sarnane
(väiksel kiirusel on õhutakistus tühine) ja erinevus tekib just tippkiiruste erinevusest.
Leiame lõppkiirused ja distantsi läbimise ajad antud lähenduses mõlema juhtumi jaoks.

a) Ilma tuuleta olukord: võimsus kulub puhtalt õhutakistuse ületamiseks. Ratturi õhu-
takistus on Ft = 0,45Aρv2 = kv2, kus k = 0,234 kg/m ning võimsus on seega
P = Ftv0 = kv3

0, millest

v0 = 3

√
P

k
≈ 12,880 m/s.

Raja läbimiseks kuluv aeg on seega

t0 = L

v0
≈ 15,528 s.



b) Külgtuulega olukord: külgtuul kiirusega u tekitab liikumissuunas lisatakistuse. Takis-
tusjõud on suurusega k(v2 +u2) ning suunatud piki ratturi ja tuule suhtelist kiirusvektorit.
Kui v � u, siis liikumissuunaga parallelne takistusjõu komponent on

Fx = k(v2 + u2) v√
u2 + v2

≈ kv2 + 1
2ku2.

Võimsuse bilanss P = Fxv annab

P ≈ kv3 + 1
2ku2v ≈ kv3 + 1

2ku2v0.

Kuna parema poole teine liige kujutab endast väikest parandliiget, võisime seal teha lä-
henduse v ≈ v0.

Seega, v = 3
√

P
k − 1

2u2v0 ≈ 12,828 m/s, t = L/v ≈ 15,591 s ning t − t0 ≈ 0,063 s.

Täpne vastus: 0,051 s

3. (Kiikumine)

Ligikaudne lahendus.
Kiigele hoo andmine raskuskeskme liigutamise teel on nähtus nimega parameetriline reso-
nants. Laps teeb tööd, muutes süsteemi pikkust: ta tõstab oma raskuskeset (tõmbab end
kätega üles või tõuseb püsti), kui varda pinge on suur, ja langetab seda, kui pinge on väike.

Lihtsaim viis mehhanismi mõistmiseks on eeldada, et laps muudab kiige pikkust järsult
("kandiline" pumpamine). Vaatleme ühte poolperioodi:

• Alumine asend: Laps tõuseb püsti (lühendab kiike suurusega ∆x = 2a), kui kiirus
on maksimaalne. Varda pinge on siin suurim: Tmax ≈ mg+2E/L. Laps teeb süsteemi
energia suurendamiseks tööd Wsisse ≈ Tmax · ∆x.

• Ülemine asend: Laps kükitab (pikendab kiike), kui kiirus on null. Pinge on
siin väikseim: Tmin ≈ mg − E/L. Süsteem teeb lapsega tööd (energia väheneb):
Wvälja ≈ Tmin · ∆x.

Netotöö ühe poolperioodi jooksul on ∆E ≈ (Tmax −Tmin)∆x ≈ 3E
L (2a) = 6 a

LE. Tähistame
energia suhtelise kasvu ühe sammu (poolperioodi) jooksul δ = 6a/L.

Aja t jooksul läbib kiik N poolperioodi. Energia kasvab sammhaaval, mis paljude sammude
korral läheneb eksponentsiaalsele funktsioonile:

E(t) = E0 (1 + δ)N ≈ E0eNδ

Amplituud on võrdeline energia ruutjuurega, A(t) ∝
√

E(t), seega:

A(t) ≈ A0
√

eNδ = A0eN δ
2

Asendame poolperioodide arvu N = t
T/2 = tω

π ja δ = 6a
L :

A(t) = A0 exp
(

tω

π
· 3a

L

)
= A0 exp

(3aω

πL
t

)

Otsime aega t, millal A(t) = 2A0:

e
3aω
πL

t = 2 =⇒ 3aω

πL
t = ln 2,

millest

t = π ln 2
3

L

a

√
L

g
≈ 31 s.



Täpne lahendus.
Ülaltoodud mudel eeldas hüppelist liikumist. Sujuva, sinusoidaalse liikumise korral on
energiaülekanne vähem efektiivne täpselt teguri π/4 võrra, seega täpne vastus

t = 4 ln 2
3

L

a

√
L

g
≈ 38,9 s

4. (Saunalavalt vette)

Ligikaudne lahendus.
Aja τ jooksul levib jäise vee jahtumine teatud karakteersele sügavusele δx. Selle kihi
erisoojus on ρAδxc ning seega kadunud soojushulk on Q ≈ ρAδxc∆T , kus ∆T = T1 − T0.
Samas peab kihist eraldunud soojushulk läbima keha koes vahemaa δx aja τ jooksul.
Soojusvoog on ligikaudu kA∆T/∆t ning seega

Q ≈ kA∆Tτ

δx
≈ ρAδxc∆T.

Niisiis, maha jahtunud kihi paksus on ligikaudu

δx =
√

kτ

ρc
= 0,87 mm

ja seega kaotatud soojushulk on

Q ≈ ρAδxc∆T = 124 kJ.

Dimensioonide analüüs.
Eeldame, et otsitav soojushulk Q sõltub ülesandes antud muutujatest astmeseaduste kau-
du:

Q ≈ ·Aα · ∆T β · τγ · kδ · ρε · cζ .

Avaldame kõikide suuruste ühikud SI põhiühikutes (kg, m, s, K):

• [Q] = J = kg · m2/s2

• [A] = m2

• [∆T ] = K

• [τ ] = s

• [k] = W·m−1 ·K−1 = kg · m/s3/K

• [ρ] = kg/m3

• [c] = J·kg−1 ·K−1 = m2 ·s−2 ·K−1

Asendame need esialgsesse võrrandisse:

kg · m2·s−2 = (m2)α(K)β(s)γ(kg · m · s−3·K−1)δ(kg · m−3)ε(m2·s−2·K−1)ζ .

Koostame võrrandisüsteemi iga ühiku astendajate jaoks:

kg : 1 = δ + ε

m : 2 = 2α + δ − 3ε + 2ζ

s : −2 = γ − 3δ − 2ζ

K : 0 = β − δ − ζ



Meil on 4 võrrandit ja 6 tundmatut. Olukorra füüsikast teame, et soojushulk on võrdeline
pindalaga (α = 1) ja temperatuuride vahega (β = 1). Sellega muutub süsteem lahendata-
vaks ja leiame, et δ = ε = γ = ζ = 1/2. Niisiis,

Q ∼ A∆T
√

kρcτ = 124 kJ.

Täpne vastus: 280 kJ

5. (Laserikiir vihmas)

Ligikaudne lahendus.
Kujutame ette silindrilist piirkonda (“vorstikest”) ühe valguskiire ümber, mille raadius
on r (piisa raadius), pikkus on L ja ruumala V = πr2L. Valguskiir blokeeritakse siis,
kui selles ruumalas asub vähemalt ühe vihmapiisa keskpunkt. Hinnangus nõuame, et
“vorstikeses” on keskmiselt ühe vihmapiisa kese, st (Nk = V n = πr2L = 1), kus n on
piiskade arvtihedus (st nende arv ruumalaühiku kohta).

Seome kontsentratsiooni n sademete intensiivsusega I. Aja t jooksul langeb pinnale S
vihmakogus ISt, mis on võrdne õhusambas (h = vt) olevate piiskade ruumalaga:

ISt = (nSvt) · 4
3πr3 =⇒ n = 3I

4vπr3 .

Asendame selle “vorstikeses” olevate piiskade arvu avaldisse:

Nk =
( 3I

4vπr3

)
πr2x = 3Ix

4vr
.

Nõudest Nk ≈ 1 saame hinnangu kiire pikkuse jaoks:

L ≈ 4vr

3I
≈ 336 m.

Täpne lahendus.
Ülesandes küsiti vahemaad, kus võimsus väheneb 10 korda, seega peab teatud kiire an-
tud kaugusele jõudmise tõenäosus olema p = 0,1. Jagades ruumala mõtteliselt paljudeks
väikesteks osadeks, avaldub läbimineku tõenäosus kujul

p = lim
M→∞

(
1 − Nk

M

)M

= e−Nk .

Seades tingimuseks p = 0.1 saame, et e−Nk = 0,1 =⇒ Nk = ln 10 ≈ 2,30. Seega on täpne
vahemaa ln 10 korda suurem kui meie esialgne hinnang, st 774 m.

6. (Ruudu elektriväli)

Ligikaudne lahendus.
Vool siseneb ühest nurgast ja väljub teisest. Kuna kontaktid on väikesed (r � a), siis on
kontaktide lähedal väga suur voolutihedus ja järelikult ka väga suur elektriväli. Võime
hinnata kontakti läheduses plaadi takistust kauguselt r kuni kauguseni 2r kui

R1 ≈ ρ
π

2
r

tπ3r/4 = 2
3

ρ

t
,

kus π3r/4 tähistab selle “takisti” keskmist “laiust”, st keskele tõmmatud kaare pikkust.
Täpselt samasuguse takstuse annab vahemik kauguselt 2r kuni 4r jne; lõppkokkuvõttes
peame korrutama tulemuse selliste “takistite” arvuga log2(a/r); et meil on kaks kontakti,
siis tuleb korrutada ka teguriga 2, st

R ≈ 4ρ

3t
log2(a/r).



Kuna takistite jadaühenduses jagunevad pinged võrdeliselt takistustega, siis “istub” põ-
hiosa pingest kontaktide lähedal, kusjuures ruudu keskosa kujutab ligikaudu vaid üh-
te takistit takistusega R1. Seega saame hinnata ruudu vastasservale jäävat pinget kui
U1 ≈ U 1

2 log2(a/r) ning elektrivälja kui

E ≈ U1/a ≈ U

a log2(a/r) ≈ 0,018 V/m.

Täpse vastuse saab leida Fourier’ rea abil, E = 0,0159 V/m.


